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The expression of the correction factor 45 in nucleation theory is derived by extending 
the method Reiss used recently. 45 is the factor appearing in the number of critical 
nuclei (formed as a vapor condenses into liquid drops) as a correction to the conven- 
tional theory. It is shown that 45 = p,v~/kT, wherepz is the pressure of the liquid phase 
inside the drop, v~ is the volume per molecule in the vapor phase, k is the Boltzmann 
constant, and T is the absolute temperature. The difference between this 45 and Reiss's 
expression is p , ,  which replaces his p~ (the vapor pressure in equilibrium with the drop). 
The 45 derived in this paper is compatible with the expression 45 = vg/v~ (v~ is the 
molecular volume in the liquid phase) previously proposed by the present author. 

KEY W O R D S :  Nucleation; condensation; rate; partition function; clusters; surface 
layer; unstable equilibrium; fluid. 

1. I N T R O D U C T I O N  

In  a recent  publ icat ion,  m Reiss reviewed the theory  o f  condensa t ion  f rom supersatu-  
r a t ed  vapor  into l iquid drops  and  then, looking  at  the  p rob l e m f rom a novel  angle, 
p r o p o s e d  a theory  which shed new light on the cont rovers ia l  " t r ans l a t i on - ro t a t i on  
p a r a d o x . "  The po in t  o f  issue is the expression o f  the number  o f  cri t ical-sized nuclei, 
par t icu la r ly  the preexponent ia l  fac tor  in the expression. Since this fac tor  comes of ten 
in our  discussion, we will call it  ~b. I t  cor responds  to ['~/N in Reiss 's  Eq. (R25) (we 
write R to indicate  the equat ion in Reiss 's  paper(1)). His tor ica l  b a c k g r o u n d  and  the 
significance o f  q) are found  in Ref. 1. Reiss derived tha t  q~ is expressed as 

~R = p g v J k T  (1) 

1 Hughes Research Laboratories, Malibu, California. 
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where pg (written as p~ in Reiss's paper) is the pressure required to compress the drop 
or the pressure of the gas in equilibrium with the drop, vg is the volume per molecule 
in the gas phase, k is the Bolzmann constant, and T is the absolute temperature. 

A remarkable consequence of Reiss's result is that the factor q~R reduces to unity 
when the drop is in equilibrium with the (supersaturated) vapor phase, since the 
vapor can be approximated as ideal. This fact further suggests that even when the drop 
is not in equilibrium with the vapor, the factor qSR is not expected to be much different 
from unity. 

On the other hand, the present author 12) derived the following expression for q~: 

~ K  = vg/v~ (2) 

in which vz is the volume per molecule in the liquid phase. The purpose of the present 
paper is to propose a modification of Reiss's q~ and to reconcile the apparent dis- 
crepancy between q~R and q)~. 

2. A N  I N E Q U A L I T Y  T O  BE OBEYED BY �9 

Reiss showed in his Eq. (R42) that the partition function of a vapor system that 
contains n~ drops of  i molecules is written as 

Q = ~ ]-[ [(qOn~/(nfl)l (3) 
n i 

where q~ is the partition function of a cluster of size i: 

= (V/i! A ~') f . . . f  exp(--/3u,) dr2' "" dr,' (4) qi 
R i  

The coordinate of the kth molecule is denoted by r~ and the relative coordinate with 
respect to the first molecule is written as rk': 

r/c' ~ rk -- r I for k ~- 2, 3 .... , i (5) 

V is the volume of the vapor phase, A is the factor resulting from the momentum 
integral: 

A ~ h/(2~rnkT) ~/2 (6a) 

and 

i~ = 1/kT (6b) 

We define that the integration range designated by Ri in (4) is over all possible 
relative configurations of the i molecules that are within a sphere of radius r and thus 
in the volume vl = 47rr~/3. Each relative configuration is counted only once; in other 
words, when two configurations are within the sphere and are superposable on top 
of each other, they are counted only once in R, .  With this definition of R~, the 
partition function Q in (3) is proportional to the probability of finding a spherical 
drop of radius r. Reiss uses q, in two meanings. Our q, in (4) is different from his q, 
defined in (R43) and (R37), but is exactly the mathematical expression of q, in (R64). 
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Since the potential energy ui of the i molecules is a function of r ( ,  .... r /  and is 
independent of the absolute location of r l ,  the front factor V in (4) results when we 
linearly translate the first molecule r 1 , keeping a relative configuration fixed, over the 
entire volume V of the vapor phase. 

We are interested in the relation between (4) and a second phase integral defined 
in (RS0) and (R52): 

q~a) = (1/i[ A ai) f "'" f exp(--flui) dr 1 -.-dri 
q)i 

(7) 

The constraint on the integration indicated by v~ is that all i molecules are contained 
within a spherical surface of  volume v~. The integration is done for the i molecules, 
in contrast to (4), which is for the relative coordinates only. Reiss derived the following 
relation for q~ to be used in (3): 

= vql ) (8) 

Combining this with the general definition 

('~ - 1  (a) = N q,/q, (9) 

he obtained the expression q)R in (1). 
In this section, we do not discuss the derivation of (8), but rather compare (8) 

with an inequality which q~ and q~al should satisfy. We start with (7) and change 
coordinates to the relative coordinate system: 

q~d) = Off! Aai) f "" f exp(--/3ui)dr2' "" dri' f dr1 (lOa) 

In the integral f dr1, the relative coordinates r 2' , .... ri' are fixed and the configuration 
is linearly translated within the spherical boundary. How far the linear translation 
can be done depends on the configuration, and the volume within which rl can move 
is denoted by ~5(r2',..., ri'). Thus, we write (10a) as 

q(a, = (1/i! A ai) f "" f exp (--flui) 4(r(,..., r / )  dr2' "" dri' i 
R i  

(lOb) 

The limit of integration is the same as (4), as is indicated by R~. Here, ~(r2', .... r/)is 
the volume in which the first molecule can move while the entire i molecules linearly 
translate rigidly within the fixed spherical boundary. From its physical meaning, 
we maintain that ~ is roughly of the order of the volume per molecule in the condensed 
phase; however, for our present purpose, it is sufficient to take the absolutely safe 
upper limit of 4: 

.... r / )  < (11) 
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which says that ~J is smaller than the entire volume of integration, i.e., the volume of 
the sphere. When we combine (11) with (10), we see 

q~a) < (vi/i! Aai) f ... f exp(--flui)dr 2' "'" dri' 
Ri 

(12) 

Now, the integration part  of  the right-hand side is the same as the one in qi in (4), 
so that we can derive 

q~) < %/v)  q~ (13) 

Substitution of (13) in (9) leads to the inequality 

cp > vg/vi -- vg/iv~ (14) 

The number on the right-hand side is 10 ~ when we use the values for water vapor: 
vg = 4 • 10 -19 cm 3, v~ = 3 • 10 .33 cm 3, and i = 100. As was commented in deriving 
(11), v~ is a vast overestimation of ~; a more reasonable value of ~J is the individal 
molecular volume vz in the liquid phase. ~b~ in (2) is equivalent to saying that ~ can 
be equated to v~. 

We now notice that vdv~ in (14) and hence ~ do not become close to unity, 
contrary to Reiss's claim in his Section 5. The question why our estimate of  q5 is 
different from Reiss's is anwered in the rest of this paper. 

3. REVIEW OF REISS'S T R E A T M E N T  

We want to review the key steps of  Reiss's treatment. The surface free energy, 
which Reiss did not explicitly take into account, will be included in the formulation. 

Reiss wants to construct qi in (4) using ~(a) in (7). The latter is the partition 
function of a drop of i molecules contained inside a fixed spherical surface. When we 
move the sphere to a location not overlapping the previous sphere, we have another 
partition function q~a) made of states which are completely different from those in 
the previous q~d). Roughly speaking, q~ in (4) is obtained when we move the sphere 
around over all the volume V and sum up contributions from q~d) from each location 
of the sphere. In this summing-up process, however, care must be taken when two 
spheres overlap; when they do, states contained in two q~e)'s are not necessarily 
different. 

Suppose we shift the sphere from the location $1 to So in Fig. 1 and want to 
calculate the fresh contribution AZ to the partition function qi. We define V 0 as 
the volume inside S o but outside S1. The shaded area in Fig. 1 is a section of V0. 
Now, A Z  is a sum over states in which i molecules are within the sphere So with an 
additional requirement that at least one molecule lies within V0 �9 It  is written as 

zJZ = Z[S0l - -  Z[S0 --  V0] (15) 

where Z[S0] is the partition function of i molecules when all of them are in the sphere 
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C 

Fig. 1. Unit shift of a spherical drop. 

So, and Z[So --  V0] is the corresponding partition function when the i molecules are 
in So but outside of Vo. 

By definition, Z[So] is identical to q~a) in (7). It is written as 

q~' = Z[So] = Z(v) = exp[-- f i f (v)  --/3b(a)] (16a) 

where v is the volume of the sphere, f ( v )  is the Helmholtz free energy of the interior, 
and 8(a) is the surface free energy. 8(a) depends on the surface area a, which in turn is 
a function of v. Although the shape of the volume S o -- 17o is slightly deformed from 
a sphere, we assume 

Z [ S o -  Vo] = Z(v - - A v )  (16b) 

where Av is the volume of V o . Substitution of (16) in (15) leads to 

where 

A z  = [dZ(v)/dv] Av = fi(p~ dv  - ~ da)  Z(v) (17) 

p~ = - d f  (v)/dv (18) 

is the pressure inside the sphere, cr is the surface free energy per area, and Aa is the 
increase in area due to Av. 

When the drop is a sphere of radius r and when the distance of the shift is Al 
as in Fig. 1, the volume change and the area increase are 

Av = 7rr2 Al, Aa = 27rr Zll (19) 

Substitution of these in (17) leads to 

~ z  = ~p~(~v) z[sol (20) 
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where 

pg = p~ -- (2~/r) (21) 

It should be noticed that pg in (20) is not the inside pressure p~ of the drop, but is the 
outside pressure which is in equilibrium with the drop. 

We can also interpret the result (20) as follows. Suppose the surface ABC in 
Fig. 1 is pushed back quasistatically to the position ADC. During this prccess, any 
part of the surface is in equilibrium with the outside pressure pg, and the work done 
on the surface, which is the increase in the free energy, is pg Av. The inside pressure 
p~ always balances with the surface tension and does not appear explicitly in the final 
expression. 

A Z  in (20) corresponds to a shift of Al in Fig. 1, and represents a new term to be 
added to form qi for the entire volume. When we repeat the Al  shift numerous times, 
the resulting shift is as shown in Fig. 2. At each Al shift, the same analysis holds, 
so that the resultant contribution to qi is the sum of A Z  in (20) or the integral which 
is written as 

A Z  = fipsrr2Lq~a' (22) 
J 

where F is the length of the total shift in Fig. 2 and 7rr2L is the volume covered by the 
sphere. It should be noted that during this shift, the surface area increases by 27rrL. 

The relations (20) and (22) agree with (R56) and (R60), confirming that our 
procedure of  treating the inside free energy f (v)  and the surface free energy 6(v) 
separately as in (16) is equivalent to Reiss's interpretation, although the latter treats 
the sum f + ~ as the free energy of the droplet. So far, we have simply confirmed 
Reiss's result, and thus the question raised at the end of Section 2 remains unanswered. 
We now come to two- and three-dimensional constructions and see the difference. 

4. O M I S S I O N  OF T H E  SURFACE TERM 

It may be noticed that Fig. 2, by which we confirmed Reiss's result, is a one- 
dimensional construction. The volume covered by the linearly translating sphere 
forms a rod-shaped volume. In order to derive q~ which is for the entire volume, 
we must continue shifting the sphere in a three-dimensional volume. 

For illustrative purposes, we show in Fig. 3 how a two-dimensional space is 

L ~-- 

Fig. 2. One-dimensional shift of a spherical drop. 
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Fig. 3. Two-dimensional shift of a circle. 

covered by shifting a circle. The part below the line AB has been covered by moving 
the circle as shown in C3 --+ C4 �9 After this, the circle is raised by Al and the part 
below the line CD is covered. The circle C1 is the last position of the circle. 

Now, we move the circle to the right by Al to the Co position. The area increase 
is the diagonally hatched part A0, whose area is (Al)Z. The important point which 
should be noted is that the surface length does not increase at all as the circle is 
shifted, because the surface curve after the rightward shift is exactly of the same 
shape as before, with the only difference being that the curve has shifted to the right 
by Al, and this shift is equivalent to moving the length Al from the AB line to the CD 
line. We can understand this also by measuring the arc lengths c,arefull,y: in Fig. 4, 
which is a close-up of circles C1 and Co in Fig. 3, we see RQ = EP = Al and 
RE = QP. 

We examine in detail AZ, which is the new addition to the partition function 
after the shift from C1 to Co in Fig. 3 or 4. AZ is the sum of the Boltzmann factors 

R Q / //// t ~  

f 

i 
\kc'~\\... C O ' \ \ . . . ~ C o  

Fig. 4. Close-up of two circles Co and C1 in Fig. 3. 
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contributed from configurations that have not been counted before, and our task is 
to count these new configurations. There are two categories of  A Z ,  and we discuss 
them separately. 

I. When at least one of the i molecules of  a configuration lies in the area Ao in 
Fig. 3, the configuration is new because the molecule lies outside of the previously 
covered area. When some molecules lie in the area A1 (but none in Ao), this con- 
figuration was new in Fig. 1, but is not necessarily so in the present construction in 
Fig. 3 because any point in A1 belongs to a circle (actually, to many circles) which has 
already been constructed below the line AB.  

The new contribution AZ1 to the partition function is then 

A Z ,  = Z[Co] - -  Z[Co - -  Ao] (23) 

Z[Co] is the partition function for the whole circle Co, which can be written, analo- 
gous to (16), as 

Z[Co] = Z(a) = exp[--/3f(a) --/38] (24) 

where a is the area of  the circle and ~ is the surface free energy. Z[Co - -  Ao] is the 
partition function, i.e., the sum of the Boltzmann factors, of  configurations contained 
in Co less the area Ao. The term Co --  Ao denotes not only the area, but also the 
shape of this area. The area difference between Co and C o -  Ao is Aa = (AI) ~, as 
shown in Fig. 3. The surface length of the Co --  Ao figure is exactly the same as that 
of  Co, and the local radius of  curvature of  Co --  Ao is always the same as the radius r 
of  Co. The main difference between Co and Co --  Ao is the existence of a cusp E 
(Fig. 3 or 4) in the latter. 

We now assume that Z[Co - -  Ao] can be written also in the form of (24): 

Z[Co - -  A0] = Z(a - -  Aa) = exp[-- /3f(a - -  Aa) - / 3 ~ ]  (25) 

Then, we can differentiate to derive 

A Z I  = [dZ(a)/da] Aa =/3pt(Aa)Z[Co] (26) 

where 

p~ = - - d f  (a)/da (27) 

It  should be noted that the term corresponding to cr Aa in (17) is missing because the 
surface length does not increase in the present shift, and hence p~ is the pressure inside 
the circle rather than the outside pressure pg in (20). Another way of looking at (26) 
is that the pressure Pz (not pg) is needed and the work Pz Aa is to be done in order to 
compress starting from the whole circle and make a dent of  the area A0 to end up 
with the Co --  A0 shape. 

The following objection may be raised. In the compressed shape Co --  A0, the 
radius of  curvature is everywhere the same as r and hence the surface is balanced with 
the outside pressure pg.  Therefore, pg,  not p~, must be enough to achieve the com- 
pression, with the consequence that the change of free energy must be pg Aa rather 
than Pt Aa in (26). 
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This objection is anwered as follows. On the surface of Co --  A0, there is one 
point at which the surface tension and the pressures do not balance; this is the cusp 
point E. At E, the surface tension tends to pull the point back out to the circular 
surface. In other words, an extra work, beside pg(Al) 2, is required to push in the cusp 
point f rom the surface to the point shown in Fig. 3 or 4. This extra work w is shown 
in (30) to be (~/r)(Al) 2, which is equal to (p~ -- pg)(Al) 2 in the two-dimensional circle. 
Thus, the total work done, which is the sum of pg(Al) 2 and (e/r)(Al) 2, is pz(Al) 2 as 
shown in (26). 

The extra work w needed to push the arc QP of Fig. 4 into the position RE is 
calculated as follows. Suppose this pushing-in operation is done by sliding the arc 
QP parallel to itself, keeping the point P on the arc CP. At the point E, the surface 
tension cr acts along two directions as shown by the arrows. The net horizontal 
component  of  these forces is ~(1 --  cos ~), neglecting the higher-order effect due to 
the curvature of  EP. Since the arc PQ is slid parallel to itself, the net force acting on P 
at any point during the sliding operation is also e(1 --  cos c 0. The work done against 
this component  in bringing P to E is 

w = ~(1 - -  cos c~) d l  (28) 

On the other hand, the geometrical construction in Fig. 4 gives 

Al = r(1 - -  cos c 0 (29) 

Combination of the two leads to 

w = (~/r)(A1)~ (30)  

Another objection may be raised, this time against (25). I t  may be argued that 
the internal free energy f in (24) or (25) may depend not only on the area of  the 
figure, but also on its shape, particularly when the circle is of  a microscopic size, since 
the dent A0 has a sharp cusp. To the present author, this objection is a valid one and 
makes the result (26) questionable for a circle of  small size. I f  the drop is small, the 
density fluctuation on the surface becomes large so that the dent we are interested in 
may be regarded as a natural occurrence. This means the work to be done to form the 
dent is expected to be much smaller than (c@) Aa, to result in a change of Pz to a 
smaller value. We will come back to this point again at the end of Section 5 and in 
the discussion in Section 6. 

lI. The second category of new configurations is made of those for which each 
molecule (of the i molecules in the configuration) belongs to one of the old circles 
but there are at least two molecules that are not covered by a single old circle. An 
example is based on the area Ak, k = 0, 1, 2, in Fig. 5(a) and satisfies the following 
three conditions simultaneously: (i) no molecule is in the area A0, (ii) at least one 
molecule lies in the area A1, and (iii) at least one molecule lies in the area A2. Such a 
configuration is new because A2 is inside the dashed circle while A1 is outside, and a 
part  of  A1 is inside the dot-dash circle while A2 is outside. 

The contribution AZna (to the partition function) due to the new configurations 
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Fig. 5. Overlapping areas of three circles corresponding to Figs. 3 and 4. 

AI 

defined in Fig. 5(a) is estimated in two steps. First, we calculate the contribution 
A Z ~  a due to those configurations which satisfy the conditions (i) and (ii) only. This 
is evaluated as 

A Z I I  a = Z [ C o  - -  Ao] -- Z [ C o  - -  A o  - -  A1] (31) 

where Z [ C o  - -  A o  - -  A t ]  is the partition function of configurations for which mole- 
cules are in the circle Co but outside of A0 and A~. The next step is to find the fraction 
of A Z ~ I  a that is due to those configurations that which satisfy (i) and (iii) only. We 
estimate it by using a simple proportion: 

L ~ Z l l a  m / l Z ; i s ~ ( Z [ C o  - -  Ao] -- Z [ C o  - -  A o  - -  A 2 l ) / Z [ C o  - -  Ao] (32) 

In order to evaluate these expressions, we assume a relation similar to (16a): 

Z [ C o  - -  A0] = Z ( a )  = e x p [ - - f i f ( a )  - -  fiB(s)] (33a) 

where a and s are respectively the area and the surface length of the Co -- A0 figure. 
f ( a )  and 8(s) are the internal free energy and the surface free energy, respectively. 
We further assume 

Z [ C o  - -  A o  - -  A~] = Z ( a  - -  A a )  - -  e x p [ - - f i f ( a  - -  A a )  - -  3 ~ ( s  - -  A s ) ]  (33b) 

When we examine Fig. 5(a), we see 

A a  = r A l  + o (A1 ) ,  A s  = A 1 - 5  o ( A l )  (34) 

where o ( A l )  is a smali quantity of order higher than Al. Combining (33) and (34), 
we derive 

Z [ C o  - -  Ao] -- Z [ C o  - -  A o  - -  A1] = f l (pg A a  - -  ~ A I )  Z [ C o  - -  Ao] 

= f i p g r ( A l )  Z [ C o  - -  Ao] (35) 



Treatment of Droplike Clusters in Nucleation Theory Using Reiss's Hethod 341 

where we used 

p~ = p~ + (e/r) (36) 

for the circle. 
We see that (34) holds for the difference between Co -- A0 and Co -- A0 --  A~ 

also, and hence (35) holds when A1 is read A2 on the left-hand side. Substitution of  
the original (35) and the modified one into (31) and (32) leads to 

AZ,,a = (riper Al) 2 Z[Co -- A0] (37) 

Comparing this with (26), we see 

AZ~gAZ~ -- (p~r~/k T)(pg/p3 (38) 

Figure 5(a) is not the only case of category II; those configurations that satisfy 
the conditions (i), (ii), and (iii) based on Fig. 5(b) also belong to category II. We do 
not go into the details, but AZHb and other contributions due to group II are of the 
same order of magnitude as AZ~I~ in (38). Thus, we may write 

/1ZII /  /I Z I  = c~(por~/k T)(pg/p3 (39) 

where c~ is of the order of  unity. Under ordinary circumstances, the ratio (39) is much 
smaller than unity, so that AZx in (26) is the main contribution. Comparison of (26) 
with (20) shows that Reiss's derivation is good for a one-dimensional construction 
but not for two, and suggests how the three-dimensional case is to be treated. It  is 
done in the next section 

5. T H R E E - D I H E N S l O N A L  SPACE 

In this section, we let the sphere cover a three-dimensional space. We move the 
sphere by Al each time, and the center of the sphere occupies a lattice point of a simple 
cubic lattice as shown in Fig. 6. Due to the difficulty of drawing stacked overlapping 
spheres, we draw only their centers in Fig. 6. In each layer perpendicular to the z axis, 
the sphere is moved on a line parallel to the y axis (A --~ B); after a line is finished, 
the sphere is shifted by A l to the x direction and moved onto the next line (C -+ D). 
After one layer is finished, the sphere is moved by Al to the z direction and the next 
layer is covered. Figure 6 shows an intermediate stage where So is the next position 
of (the center of) the sphere. 

When we stack N spheres as is shown in Fig. 6, the total volume is (AI)aN. 
Therefore, the new volume which is added when the sphere is shifted from $1 to the 
S O position is 

Av = (AI)~ (40a) 

We will call this added volume V 0 . As this volume is added, the surface area does not 
increase, because the situation is analogous to Fig. 3 for the two-dimensional case 
and the same surface area simply shifts position: 

Aa = 0 (40b) 

822/3f3-7 
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Fig. 6. Positions of the center of a spherical drop as it is shifted three-dimensionally. 

The contribution to the partition function A Z z  by those configurations for which 
at least one molecule is in Vo is calculated, using 

Z[S0] = Z ( v )  = e x p [ - - f i f ( v )  - - f i ~ ]  (41a) 

Z [ S  o - -  Vo] = Z ( v  - -  A v )  = e x p [ - f i f ( v  - A v )  - -  f ie] (41b) 

as 

, d z ,  = [dZ(,~)/dv] a v  - -  #p~(A~) Z[So] (42) 

where Z[S0] ----- q~a) is the partition function of i molecules when they are inside the 
sphere So, andp~ is defined in (18). 

It is significant that pg in (20) is now replaced by p , .  The appearance of Pz in 
(42) corresponds to the existence of the cusp-shaped edges on the corner volume V o . 
As was discussed in Section 4.I, extra work is needed to push in the spherical surface 
against the surface tension, keeping the cusp-shaped edges. Working with straight- 
forward but tedious geometry, we can prove that the extra work is (2~/r)Av, so 
that the total work done is 

Po AV -}- (2o'/r) AV = Pc dV (43) 

In the two-dimensional case of the previous section, we showed that there were 
two categories of new configurations, I and I1. The A Z I  calculated in (42) corresponds 
to category I. In the three-dimensional case, we can classify two other categories II 
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and III. In understanding them, we define volumes Vk, k = 1, 2, 3, based on Fig. 6 
such that VTo is the volume in the sphere So but outside of the sphere S~. Also, we 
define the volume Vk~ as the volume common to V~ and V~. An example of a con- 
figuration in group II contains at least one molecule in each of Vx and V2a (and cyclic 
changes). A configuration in group III contains at least one molecule in each of 
V~, k = 1, 2, 3. It does not seem worthwhile to go into the details of groups II 
and III, since contributions from them are negligible under ordinary circumstances 
as we saw in Section 4.II. Therefore, in the present discussion, we regard (42) as the 
total contribution to the partion function as the volume increases by Av. 

When the shift of the sphere is continued over the entire volume V of the system, 
the resultant contribution to qr in (4) is the sum of (42): 

qi = f AZI  = [~PzVq~ d) (44) 

Z[S0] in (42) is the partition function of i molecules when all of them are in the sphere 
So, and is identified ith q~a) as in (16a). Equation (44) is the same as Reiss's result (18) 
except that his pg is now replaced by p~. Since q~ and q~a) in (44) are those used in 
defining q~ in (19), the new relation (44) leads to the revised expression 

q)R' = pzv~/kT (45) 

It is important to note that the macroscopic expressions are used for Z[So] and 
Z[So -- Vo] in (41), and in the differentiation procedure of (42). As was commented 
at the end of Section 4.I, when the size of a drop is microscopic, the expression of 
Z[So -- V0] in (41b) is particularly questionable because the surface has a sharp dent 
in it; it is likely that the argument presented in the last paragraph of Section 4.I 
works and p~ in (45) is to be replaced by a smaller value. In any event, the nature of 
the approximations involved in (41) should be clarified before the result (45) can be 
accepted with full confidence. 

6. C O N C L U D I N G  R E M A R K S  

What we have shown in this paper is that the "correction" factor ~bR in (1) 
which Reiss derived should be written as ~bR' in (45), the change being to replace 
Reiss's Po, which is the pressure outside of a drop, by the inside pressure p~. The basis 
of this change is the three-dimensional construction presented in Section 5 in contrast 
to Reiss's analysis, which is good only in a one-dimensional system shown in Section 3. 
The modified expression CR' satisfies the required inequality presented in Section 2. 

It is instructive to compare q~R' and ~K.  Taking into account the fact that the 
nucleus of critical size is in equilibrium with the vapor phase, we can construct the 
chemical potential versus the pressure isotherm schematically as in Fig. 7. The 
difffference/x --/~0 is 

/ x - - / z o =  f (Ol~/~p)rdp= f vdp (46) 
~o ~o 
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Fig. 7. 
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Schematic illustration of the chemical potential versus pressure curves for the liquid and 
gas phases. 

This can be calculated for the vapor phase and the liquid phase. For the former, we 
use the ideal gas equation of state, so that 

I x - -  I~o = k T l n ( p g / p o )  (47) 

For the liquid phase, we may use v = v~ 4- v z ' (p  - - P o )  with constant vz and vz', 
so that 

Ix - -  I~o = vz(pz - -  Po) -~ �89 - -  po) 2 (48) 

Usually, the right-hand side can be approximated by the first term v~p~. Equation (47) 
and (48), we obtain 

q ) R ' / ~  = p z v j k T  = ln(pg/po)  ~_ In S (49) 

The ratio Pg/Po is called the supersaturation and is often denoted by S; In S is usually 
of the order of unity. (a) It may be noted that the relation (49) is used, by replacing 
p~ with 2c~/r, in the form called the Thomson equation: 

r = 2 e v j ( k T l n  S )  (50) 

to connect the size of the critical nuclei and the supersaturation.(~) 
The ratio in (49) shows that the revised Reiss treatment r R' and the author's 

previous expression r K are compatible but not quite the same. The two expressions 
are greatly different when In S is different from unity. However, it is not so bad as it 
looks. When In S is less than unity, P0 becomes important with respect to p~ in (48) 
and the right-hand side of (49) has additional positive terms; also, the configurations 
in categories II and III in Section 5 become important, as is seen from the right-hand 
side of (39). When In S is large, however, the modified Reiss result (45) is questionable 
for the reason mentioned in the last paragraph of Section 5; it is reasoned that Pt is 
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to be replaced by a smaller value to result in partly cancelling the In S effect and hence 
in better agreement between q)R' and ~ x  in (49). 

We do not imply that the author 's  previous result CK is free from approxima- 
tions. I t  is interpreted that both ~R' and ~ x  take advantage of simplifications made 
possible by approximations and emphasize different aspect of  the problem. What  
exactly are the approximations in each method are still to be answered. Nevertheless, 
it is reassuring that the two methods, which proceed independently, lead to results 
which are essentially the same in cases of practical interest. 2 

As was described in the historial introductions in the papers by Reiss m and by 
the author, (~) the whole series of  papers on the correction factor r were started by 
the proposal of  the problem by Lothe and Pound. (5) They reasoned heuristically that 
the correction factor r is the ratio of  the partition function for the translational 
and rotational degrees of freedom of a droplet to the partition function of  the six 
degrees of  freedom in the condensed phase and the value of q~ in a typical case is 1017. 
The close agreement between CR' in (45) and the previous result (bx in (2), both 
based on sound statistical mechanical ground, leaves no doubt that ~R' or q)x is the 
correct expression of the factor ~b except for possible future refinements. Acknowl- 
edging the credit to be given to Lothe and Pound for having stimulated the interest 
of  the scientific community to the problem of the correction factor, we can now safely 
announce that the problem has been solved. We can thus repeat with more confidence 
the conclusion stated by Reiss in the last paragraph of Ref. 1: The controversy over 
1017 is now replaced by a new challenging problem of evaluating the surface free 
energy of a droplet of  a small size. 

A C K N O W L E D G M E N T  

Discussions with Dr. Howard Reiss helped improve the paper and are gratefully 
acknowledged. 

R E F E R E N C E S  

1. H. Reiss, J. Stat. Phys. 2:83 (1970). 
2. R. Kikuchi, J. Stat. Phys. 1:351 (1969). 
3. F. F. Abraham, 3. Appl. Phys. 39:3287 (1968). 
4. J. Frenkel, Kinetic Theory of  Liquids, Oxford University Press, 1946, Chapter VII. 
5. J. Lothe and G. M. Pound, J. Chem. Phys. 36:2080 (1962). 

2 In a private communication, Dr. Howard Reiss agreed that this paper is the correct implementation 
of the program he initiated in Ref. 1 and he endorsed the result (45). The following observation of his 
contributed to this endorsement: Although the estimate of ~ using a thermodynamic cycle in the 
last section of Ref. 1 is valid as a consistency argument of his paper, it is to be modified in order 
to be compatible with the present analysis and thus does not contradict (45). 


